Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isotopic constraints on plant nitrogen acquisition strategies during ecosystem retrogression.

Identifieur interne : 000121 ( Main/Exploration ); précédent : 000120; suivant : 000122

Isotopic constraints on plant nitrogen acquisition strategies during ecosystem retrogression.

Auteurs : Katherine A. Dynarski [États-Unis] ; Benjamin Z. Houlton [États-Unis]

Source :

RBID : pubmed:32025895

Descripteurs français

English descriptors

Abstract

Plant root associations with microbes such as mycorrhizal fungi or N-fixing bacteria enable ecosystems to tap pools of nitrogen (N) that might otherwise be inaccessible, including atmospheric N or N in large soil organic molecules. Such microbially assisted N-foraging strategies may be particularly important in late-successional retrogressive ecosystems where productivity is low and soil nutrients are scarce. Here, we use natural N-stable isotopic composition to constrain pathways of N supplies to different plant functional groups across a well-studied natural soil fertility gradient that includes a highly retrogressive stage. We demonstrate that ectomycorrhizal fungi, ericoid mycorrhizal fungi, and N-fixing bacteria support forest N supplies at all stages of ecosystem succession, from relatively young, N-rich/phosphorus (P)-rich sites, to ancient sites (ca. 500 ky) where both N supplies and P supplies are exceedingly low. Microbially mediated N sources are most important in older ecosystems with very low soil nutrient availability, accounting for 75-96% of foliar N at the oldest, least fertile sites. These isotopically ground findings point to the key role of plant-microbe associations in shaping ecosystem processes and functioning, particularly in retrogressive-phase forest ecosystems.

DOI: 10.1007/s00442-020-04606-y
PubMed: 32025895


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Isotopic constraints on plant nitrogen acquisition strategies during ecosystem retrogression.</title>
<author>
<name sortKey="Dynarski, Katherine A" sort="Dynarski, Katherine A" uniqKey="Dynarski K" first="Katherine A" last="Dynarski">Katherine A. Dynarski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA. kadynarski@ucdavis.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Ave, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Houlton, Benjamin Z" sort="Houlton, Benjamin Z" uniqKey="Houlton B" first="Benjamin Z" last="Houlton">Benjamin Z. Houlton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Ave, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32025895</idno>
<idno type="pmid">32025895</idno>
<idno type="doi">10.1007/s00442-020-04606-y</idno>
<idno type="wicri:Area/Main/Corpus">000178</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000178</idno>
<idno type="wicri:Area/Main/Curation">000178</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000178</idno>
<idno type="wicri:Area/Main/Exploration">000178</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Isotopic constraints on plant nitrogen acquisition strategies during ecosystem retrogression.</title>
<author>
<name sortKey="Dynarski, Katherine A" sort="Dynarski, Katherine A" uniqKey="Dynarski K" first="Katherine A" last="Dynarski">Katherine A. Dynarski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA. kadynarski@ucdavis.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Ave, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Houlton, Benjamin Z" sort="Houlton, Benjamin Z" uniqKey="Houlton B" first="Benjamin Z" last="Houlton">Benjamin Z. Houlton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Ave, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ecosystem (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Nitrogen (MeSH)</term>
<term>Plant Roots (MeSH)</term>
<term>Plants (MeSH)</term>
<term>Soil (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (MeSH)</term>
<term>Mycorhizes (MeSH)</term>
<term>Plantes (MeSH)</term>
<term>Racines de plante (MeSH)</term>
<term>Sol (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Nitrogen</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Azote</term>
<term>Mycorhizes</term>
<term>Plantes</term>
<term>Racines de plante</term>
<term>Sol</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant root associations with microbes such as mycorrhizal fungi or N-fixing bacteria enable ecosystems to tap pools of nitrogen (N) that might otherwise be inaccessible, including atmospheric N or N in large soil organic molecules. Such microbially assisted N-foraging strategies may be particularly important in late-successional retrogressive ecosystems where productivity is low and soil nutrients are scarce. Here, we use natural N-stable isotopic composition to constrain pathways of N supplies to different plant functional groups across a well-studied natural soil fertility gradient that includes a highly retrogressive stage. We demonstrate that ectomycorrhizal fungi, ericoid mycorrhizal fungi, and N-fixing bacteria support forest N supplies at all stages of ecosystem succession, from relatively young, N-rich/phosphorus (P)-rich sites, to ancient sites (ca. 500 ky) where both N supplies and P supplies are exceedingly low. Microbially mediated N sources are most important in older ecosystems with very low soil nutrient availability, accounting for 75-96% of foliar N at the oldest, least fertile sites. These isotopically ground findings point to the key role of plant-microbe associations in shaping ecosystem processes and functioning, particularly in retrogressive-phase forest ecosystems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32025895</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>192</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Isotopic constraints on plant nitrogen acquisition strategies during ecosystem retrogression.</ArticleTitle>
<Pagination>
<MedlinePgn>603-614</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-020-04606-y</ELocationID>
<Abstract>
<AbstractText>Plant root associations with microbes such as mycorrhizal fungi or N-fixing bacteria enable ecosystems to tap pools of nitrogen (N) that might otherwise be inaccessible, including atmospheric N or N in large soil organic molecules. Such microbially assisted N-foraging strategies may be particularly important in late-successional retrogressive ecosystems where productivity is low and soil nutrients are scarce. Here, we use natural N-stable isotopic composition to constrain pathways of N supplies to different plant functional groups across a well-studied natural soil fertility gradient that includes a highly retrogressive stage. We demonstrate that ectomycorrhizal fungi, ericoid mycorrhizal fungi, and N-fixing bacteria support forest N supplies at all stages of ecosystem succession, from relatively young, N-rich/phosphorus (P)-rich sites, to ancient sites (ca. 500 ky) where both N supplies and P supplies are exceedingly low. Microbially mediated N sources are most important in older ecosystems with very low soil nutrient availability, accounting for 75-96% of foliar N at the oldest, least fertile sites. These isotopically ground findings point to the key role of plant-microbe associations in shaping ecosystem processes and functioning, particularly in retrogressive-phase forest ecosystems.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dynarski</LastName>
<ForeName>Katherine A</ForeName>
<Initials>KA</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5101-9666</Identifier>
<AffiliationInfo>
<Affiliation>Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA. kadynarski@ucdavis.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Houlton</LastName>
<ForeName>Benjamin Z</ForeName>
<Initials>BZ</Initials>
<AffiliationInfo>
<Affiliation>Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DGE-1148897</GrantID>
<Agency>National Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>DEB-1150246</GrantID>
<Agency>National Science Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ecosystem retrogression</Keyword>
<Keyword MajorTopicYN="N">Mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">N fixation</Keyword>
<Keyword MajorTopicYN="N">Nutrient limitation</Keyword>
<Keyword MajorTopicYN="N">Stable isotopes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32025895</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-020-04606-y</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-020-04606-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Plants. 2015 Nov 23;1:15182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27251717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2013 Dec;173(4):1439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23912260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Feb;122(2):273-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 23;305(5683):509-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15205475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Feb;8(2):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24030593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 Mar 1;16(3):153-162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Mar;11(3):296-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Feb;23(2):95-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 Oct;174(4):465-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19694561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2018 May;28(4):343-356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29574496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Apr;87(4):816-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16676524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jul 17;454(7202):327-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18563086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2001 Sep 1;73(17):4145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11569803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16390416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2004 Aug;79(3):473-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15366760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jan 13;355(6321):134-135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28082548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jan 23;505(7484):543-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24402225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(2):367-382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):41-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23713553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 22;104(21):8902-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17502607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Dec;146(2):258-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16096847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22870281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2014 Mar;87(3):797-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24289145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 May;198(3):643-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23461709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Apr;20(4):217-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20191371</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Dynarski, Katherine A" sort="Dynarski, Katherine A" uniqKey="Dynarski K" first="Katherine A" last="Dynarski">Katherine A. Dynarski</name>
</noRegion>
<name sortKey="Houlton, Benjamin Z" sort="Houlton, Benjamin Z" uniqKey="Houlton B" first="Benjamin Z" last="Houlton">Benjamin Z. Houlton</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000121 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000121 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32025895
   |texte=   Isotopic constraints on plant nitrogen acquisition strategies during ecosystem retrogression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32025895" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020